

# 测试昉·星光 GPIO 应用说明

版本: V1.1 日期: 2021-12-27

#### 版权注释

版权 © 上海赛昉科技有限公司 2018-2022。版权所有。

本文档中的信息均基于"视为正确"提供,可能包含部分错误。内容可能因产品开发而定期 更新或修订。上海赛昉科技有限公司(以下简称"赛昉科技")保留对本协议中的任何内容 进行更改的权利,恕不另行通知。

赛昉科技明确否认任何形式的担保、解释和条件,无论是明示的还是默示的,包括但不限 于适销性、特定用途适用性和非侵权的担保或条件。

赛昉科技无需承担因应用或使用任何产品或电路而产生的任何责任,并明确表示无需承担 任何及所有连带责任,包括但不限于间接、偶然、特殊、惩戒性或由此造成的损害。

本文件中的所有材料受版权保护,为赛昉科技所有。不得以任何方式修改、编辑或断章取 义本文件中的说明,本文件或其任何部分仅限用于内部使用或教育培训。使用文件中包含 的说明,所产生的风险由您自行承担。赛昉科技授权复制本文件,前提是您保留原始材料 中包含的所有版权声明和其他相关声明,并严格遵守此类条款。本版权许可不构成对产品 或服务的许可。

#### 上海赛昉科技有限公司

地址: 浦东新区盛夏路 61 弄张润大厦 2 号楼 502, 上海, 201203, 中国

网站: www.starfivetech.com

邮箱: sales@starfivetech.com (销售)

support@starfivetech.com (支持)

# 关于本手册

## 介绍

本手册介绍了测试昉·星光 GPIO 的两种方法:

- 使用命令行测试。
- 使用演示代码测试。

## 修订历史

| 版本   | 已发布        | 修订                                |
|------|------------|-----------------------------------|
| V1.0 | 2021/12/15 | 初始版本。                             |
|      |            | 在"运行演示代码"部分:                      |
|      |            | • 新增了应用程序目录的说明。                   |
| V1.1 | 2021/12/27 | • 新增了 rsync 命令的说明。                |
|      |            | • 新增 <user_name>字段说明。</user_name> |
|      |            | • 修正了一个拼写错误。                      |

 $\square$ 



# 目录

| 关于 | 本手  | -册           | ii |
|----|-----|--------------|----|
| 1  | 准   | 备            | 4  |
|    | 1.1 | 准备硬件         | 4  |
|    | 1.2 | 准备软件         | 4  |
| 2  | 使   | 用命令行测试 GPIO  | 5  |
| 3  | 运   | 行演示代码        | 6  |
|    | 3.1 | 编译源代码        | 6  |
| 4  | 使   | 用演示代码测试 GPIO | 7  |

# 1 准备

在执行演示程序之前,务必确认已准备好以下项目:

## 1.1 准备硬件

在执行演示程序之前,请务必准备以下硬件:

| 表 | 1-1 | 硬件准备 |
|---|-----|------|
|---|-----|------|

| 类型   | M/O | 项目                                                                                                                                                                                   | 注释                                                     |
|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 通用   | М   | 一台单板计算机                                                                                                                                                                              | <ul><li>可使用以下开发板:</li><li>星光板</li><li>・ 防·星光</li></ul> |
| 通用   | М   | <ul> <li>16GB(或更大)的 Micro SD卡</li> <li>Micro SD卡读卡器</li> <li>计算机(PC/Mac/Linux)</li> <li>USB 转串口转换器(3.3 V I/O)</li> <li>网线</li> <li>电源适配器(5 V/3 A)</li> <li>USB Type-C 转接线</li> </ul> | 上述项目用于将 Fedora 操作系<br>统烧录至 Micro SD 卡中。                |
| GPIO | М   | 一台示波器                                                                                                                                                                                | 示波器用于测量引脚电压,并<br>检查 PWM 周期和占空比。                        |

\*M/O: M(必须)/ O(可选)

## 1.2 准备软件

- 软件环境
  - 电脑: Ubuntu 20.04
  - RISC-V平台: Linux 5.16.0
- 将 Fedora OS 烧录到 Micro SD 卡中,并按照《赛昉科技 40-Pin GPIO Header 用户手册》中的"准备软件"部分编译和替换 dtb 文件。

# 2 使用命令行测试 GPIO

按照《赛昉科技 40-Pin GPIO Header 用户指南》中"配置 GPIO"部分测试 GPIO0。



# 3 运行演示代码

执行以下操作,以运行演示代码:

## 3.1 编译源代码

- 1. 点击 test-gpio.c 下载测试源代码文件,保存到 Ubuntu 下的目标目录。例如, 应用程序目录。
- 2. (可选)安装编译工具。以下是安装示例:

sudo apt-get install gcc-riscv64-linux-gnu

说明**:** 

如已安装该工具,则可跳过此步。

安装完成后,运行以下代码,以确认版本是否已更新:linus@starfive\$ riscv64-linux-gnu-gcc -v。以下为输出示例:

```
Thread model: posix
gcc version 9.3.0 (Ubuntu 9.3.0-17ubuntu1~20.04)
```

**图 3-1** 输出示例

3. 执行以下命令,以编译源代码:

riscv64-linux-gnu-gcc -o test-gpio test-gpio.c

结果:

系统在当前目录生成了名为 test-gpio 的可执行文件。

4. 执行以下命令, 以测试编译是否成功:

file test-gpio

结果:

在输出结果中出现 UCB RISC-V,则表示编译成功:

Riscv@starfive:~/work/app\$ file test-gpio

test-gpio: ELF 64-bit LSB executable, UCB RISC-V, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-riscv64-lp64d.so.1, for GNU/Linux 4.15.0, BuildID[sha1]=476d5a99c84f995d03227a18285222ac25e2cd0d, not stripped

c-v2x@starfive:~/work/app\$

## 4 使用演示代码测试 GPIO

上电启动昉·星光,检查 GPIO22 的电压变化。

1. 在 Ubuntu 中执行以下命令,将可执行文件 test-gpio 上传到所需的单板计算机目录,例如 test 命令:

rsync ./test-gpio <User\_Name>@<Board\_IP\_Address>:/home/riscv/test

#### 说明:

- <User\_Name>:开发板的用户名。例如:riscv。
- <Board\_IP\_Address>: 开发板的 IP 地址。例如: 192.168.92.133。

示例:

rsync ./test-gpio riscv@192.168.92.133:/home/riscv/test

2. 执行以下命令在昉·星光上运行演示演示代码:

./test-gpio

以下是输出示例:

| Iroot  | @fedora-starfive test]#                                            |
|--------|--------------------------------------------------------------------|
| [root  | @fedora-starfive test]# ./test-gpio                                |
|        |                                                                    |
|        | ********* StarF_GPI0_IESI_DEMO *************                       |
|        | ********* Version date: 2021/12 ********************************** |
| Caster | Lanin ta init                                                      |
| Gp10   | begin to init                                                      |
| Gpio   | Init ok                                                            |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |
| Gpio   | on                                                                 |
| Gpio   | off                                                                |

#### **图 4-1** 输出示例

## 说明**:**

- Gpio on:高电压
- Gpio off: 低电压