

使用昉·星光的IIC读取 SHTC3数据

Python语言版本 应用说明 版本: 1.0 日期: 2022/07/29 Doc ID: VisionFive-ANCH-010-1.0

法律声明

阅读本文件前的重要法律告知。

版权注释

版权 ©上海赛昉科技有限公司, 2018-2022。版权所有。

本文档中的说明均基于"视为正确"提供,可能包含部分错误。内容可能因产品开发而定期更 新或修订。上海赛昉科技有限公司(以下简称"赛昉科技")保留对本协议中的任何内容进行 更改的权利,恕不另行通知。

赛昉科技明确否认任何形式的担保、解释和条件,无论是明示的还是默示的,包括但不限于 适销性、特定用途适用性和非侵权的担保或条件。

赛昉科技无需承担因应用或使用任何产品或电路而产生的任何责任,并明确表示无需承担任 何及所有连带责任,包括但不限于间接、偶然、特殊、惩戒性或由此造成的损害。

本文件中的所有材料受版权保护,为赛昉科技所有。不得以任何方式修改、编辑或断章取义 本文件中的说明,本文件或其任何部分仅限用于内部使用或教育培训。使用文件中包含的说 明,所产生的风险由您自行承担。赛昉科技授权复制本文件,前提是您保留原始材料中包含 的所有版权声明和其他相关声明,并严格遵守此类条款。本版权许可不构成对产品或服务的 许可。

联系我们:

地址: 浦东新区盛夏路61弄张润大厦2号楼502, 上海市, 201203, 中国

- 网站: <u>http://www.starfivetech.com</u>
- 邮箱: <u>sales@starfivetech.com</u>(销售) <u>support@starfivetech.com</u>(支持)

前言

关于本指南和技术支持信息。

关于本手册

本应用说明提供使用通过Python利用昉·星光的IIC总线,运行示例程序,以读取SHTC3数据的步骤。

修订历史

表 0-1 修订历史

版本	发布说明	修订	X
V1.0	2022/07/29	首次发布。	X

注释和注意事项

本指南中可能会出现以下注释和注意事项:

・ **i** 提示:

建议如何在某个主题或步骤中应用信息

・ 💋 注:

解释某个特例或阐释某个重要的点。

重要: 指出与某个主题或步骤有关的重要信息。

警告:

表明某个操作或步骤可能会导致数据丢失、安全问题或性能问题。

! 警告:

表明某个操作或步骤可能导致物理伤害或硬件损坏。

目录

表格清单	5
插图清单	
法律声明	ii
前言	iii
1. 介绍	7
1.1. 40-Pin Header定义	
2. 准备	
2.1. 准备硬件	
2.1.1. 连接硬件	
2.2. 准备软件	
3. 执行演示代码	
4. 演示源代码	

表格清单

表 0-1	1 修订历史	iii
表 2-2	1 硬件准备	.8
表 2-2	2 将Sense Hat (B)连接到40-Pin Header上	.9

插图清单

日录

图 1	-1 40-Pin定义	.7
图 2	-1 将Sense Hat (B)连接到40-Pin Header上	.9
图 2	-2 将Sense Hat (B)连接到40-Pin Header上1	10

1. 介绍

本应用说明提供使用通过Python利用昉·星光的IIC总线,运行示例程序,以读取SHTC3数据的步骤。

1.1. 40-Pin Header定义

下图以昉·星光开发板为例说明40-Pin Header的位置:

图 1-1 40-Pin定义

2. 准备

在执行演示代码前,请确保您已准备好以下事项:

2.1. 准备硬件

在执行演示程序前,请务必准备以下硬件:

表 2-1 硬件准备

类型	M/O*	项目	注释
通用	М	赛昉科技 单板计算机	可使用以下单板计算机:
			・星光板
			•昉·星光
通用	М	•16GB(或更大)的Micro SD	上述项目用于将Fedora OS烧录到
		*	Micro SD <u>L</u> 。
		• Micro SD卡读卡器	
		•计算机(PC/Mac/Linux)	
		●USB转串口转换器(3.3 V 1/	
		0)	
		•网线	
		•电源适配器	
		・USB Type-C数据线	
I2C演	М	• Sense Hat (B)	-
示		•杜邦线	

之 注:

*: M: 必须。O: 可选

2.1.1. 连接硬件

以下图表描述了如何将Sense HAT连接到40-Pin Header上:

表 2-2 将Sense Hat (B)连接到40-Pin Header上

	40-Pin GPIO Header		
Sense HAT (B)	引脚序号	引脚名	
3V3	1	3.3V Power	
GND	9	GND	
SDA	3	GPIO48 (I2C SDA)	
SCL	5	GPIO47 (I2C SCL)	

图 2-1 将Sense Hat (B)连接到40-Pin Header上

图 2-2 将Sense Hat (B)连接到40-Pin Header上

2.2. 准备软件

确认按照以下步骤进行操作:

- 1. 按照《昉·星光单板计算机快速入门指南》中的"将Fedora烧录到Micro SD上"章节,将 Fedora OS烧录到Micro SD卡上。
- 2. 登录Fedora并确保昉·星光已联网。有关详细说明,请参阅《昉·星光单板计算机快速入 门指南》中"通过以太网使用SSH登录"或"使用USB转串口转换器连接并登录"章节。
- 3. 在昉·星光Fedora上执行pip命令,以安装VisionFive.gpio包:

sudo pip install VisionFive.gpio

或者, 您也可以执行以下命令:

sudo pip3 install VisionFive.gpio

4. (可选)如果您将源代码复制到昉·星光Fedora的本地目录下,请在源代码目录下执行 以下命令:

🦸 提示:

点击以下链接可下载源代码: <u>VisionFive.gpio</u>。

sudo yum install python-devel python3-devel sudo python setup.py install

或者,您也可以执行以下命令:

sudo python3 setup.py install

3. 执行演示代码

在昉·星光的Fedora上执行以下步骤,运行演示代码:

- 1. 找到测试代码I2C_Sense_Hat.py所在的目录:
 - a. 执行以下命令以获取VisionFive.gpio所在的目录:

pip show VisionFive.gpio

示例结果:

Location: /usr/local/lib64/python3.9/site-packages

之 注:

实际输出取决于应用的安装方式。

b. 如前一步输出中所示,执行以下操作进入目录/usr/local/lib64/ python3.9/site-packages:

cd /usr/local/lib64/python3.9/site-packages

c. 执行以下命令进入sample-code目录:

cd ./VisionFive/sample-code/

2. 在sample-code目录下,执行以下命令以运行演示代码:

sudo python I2C_Sense_Hat.py

或者, 您也可以执行以下命令:

sudo python3 I2C_Sense_Hat.py

结果:

终端上输出了温湿度数据:

```
[riscv@fedora-starfive sample-code]$ sudo python3 led.py
Enter delay(seconds): /dev/i2c-1
Temperature = 27.85°C , Humidity = 56.59 %
Temperature = 27.83°C , Humidity = 56.60 %
Temperature = 27.85°C , Humidity = 56.61 %
Temperature = 27.86°C , Humidity = 56.60 %
```

```
Temperature = 27.80°C , Humidity = 56.60 %
Temperature = 27.87°C , Humidity = 56.60 %
```

4. 演示源代码

本演示中的资源代码仅作为参考。

I2C_Sense_Hat.py:

```
#!/usr/bin/python
\mathbf{r}_{i} = \mathbf{r}_{i}
Please make sure the sense HAT(B) is connected to the correct pins.
The following table describes how to connect the Sense HAT(B) to the 40-pin
header.
Sense HAT (B)-----
___Sense HAT (B)____Pin Number_____Pin Name
    3V3
                     1
                                    3.3 V Power
    GND
                      9
                                      GND
                      3
    SDA
                                    I2C SDA
                      5
    SCL
                                    I2C SCL
\mathbf{r}_{i} = \mathbf{r}_{i}
import sys
import struct
import fcntl
import os
import math
import time
import VisionFive.i2c as I2C
SHTC3_I2C_ADDRESS = 0 \times 70
I2C\_SLAVE = 0x0703
I2C_DEVICE = "/dev/i2c-1"
##Commands
cmd_dict = {
                   0x3517,
"SHTC3_WakeUp":
"SHTC3_Sleep":
                   0xB098,
"SHTC3 NM CE ReadTH":
                         0 \times 7 CA2,
"SHTC3_NM_CE_ReadRH":
                         0x5C24,
"SHTC3_NM_CD_ReadTH": 0x7866,
"SHTC3_NM_CD_ReadRH":
                        0x58E0,
"SHTC3_LM_CE_ReadTH":
                          0x6458,
"SHTC3_LM_CE_ReadRH":
                          0x44DE,
"SHTC3_LM_CD_ReadTH": 0x609C,
"SHTC3_LM_CD_ReadRH":
                          0x401A,
"SHTC3_Software_RES":
                          0x401A,
"SHTC3 ID":
               0xEFC8,
"CRC POLYNOMIAL":
                          0x131,
}
```

```
def SHTC3_CheckCrc(data, len, checksum):
    crc = 0xff
    for byteCtr in range(0, len):
        crc ^= data[byteCtr]
        for bit in range(8, 0, -1):
            if(crc & 0x80):
                crc = (crc << 1) ^ cmd_dict["CRC_POLYNOMIAL"]</pre>
            else:
                crc = crc << 1
    if (crc != checksum):
        return 1
    else:
        return 0
def SHTC3_WriteCommand(cmd):
    buf0 = (cmd >> 8) \& 0xff
    buf1 = cmd & 0xff
    buf = [buf0, buf1]
    I2C.write(buf)
def SHTC3 WAKEUP():
    SHTC3_WriteCommand(cmd_dict["SHTC3_WakeUp"
    time.sleep(0.03)
def SHTC3 SLEEP():
    SHTC3_WriteCommand(cmd_dict["SHTC3_Sleep"])
def SHTC SOFT RESET():
    SHTC3_WriteCommand(cmd_dict["SHTC3_Software_RES"])
    time.sleep(0.03)
def getdata():
    time.sleep(0.02)
    buf_list = I2C.read(3)
    checksum = buf_list[2]
    DATA = 0
    if (not SHTC3_CheckCrc(buf_list, 2, checksum)):
        DATA = (buf_list[0] << 8 | buf_list[1])</pre>
    return DATA
def SHTC3_Read_DATA():
    SHTC3_WriteCommand(cmd_dict["SHTC3_NM_CD_ReadTH"])
    TH DATA = qetdata()
    SHTC3_WriteCommand(cmd_dict["SHTC3_NM_CD_ReadRH"])
    RH_DATA = getdata()
    TH_DATA = 175 * TH_DATA /65536.0 -45.0 #Calculate the temperature
 value.
    RH_DATA = 100 * RH_DATA / 65536.0
                                              #Calculate the humidity value.
```

```
|4 - 演示源代码
    DATA = [TH_DATA, RH_DATA]
    return DATA
def getTem():
    SHTC3_WriteCommand(cmd_dict["SHTC3_NM_CD_ReadTH"])
    TH_DATA = getdata()
    TH_DATA = 175 * TH_DATA /65536.0 -45.0 #Calculate the temperature
 value.
    return TH_DATA
def getHum():
    SHTC3_WriteCommand(cmd_dict["SHTC3_NM_CD_ReadRH"])
    RH_DATA = getdata()
    RH_DATA = 100 * RH_DATA / 65536.0 #Calculate the humidity value.
    return RH_DATA
def main():
    #Open the Sense HAT by I2C.
    ret = I2C.open(I2C_DEVICE, SHTC3_I2C_ADDRESS)
    if (ret < 0):
        return 0
    SHTC_SOFT_RESET()
    i = 0
    while i < 7:
        Temp = getTem()
        Hum = getHum()
        SHTC3_SLEEP()
        SHTC3 WAKEUP()
        print("Temperature = {:.2f}°C , Humidity = {:.2f} %\n".format(Temp,
 Hum))
        i = i + 1
    I2C.close()
    return 0
if __name__ == "__main_
                         П
    sys.exit(main())
```