

昉·惊鸿7110 SPI开发手册

昉·星光 2 版本: 1.0 日期: 2022/11/10 Doc ID: JH7110-DGCH-005

法律声明

阅读本文件前的重要法律告知。

版权注释

版权 ©上海赛昉科技有限公司, 2023。版权所有。

本文档中的说明均基于"视为正确"提供,可能包含部分错误。内容可能因产品开发而定期更 新或修订。上海赛昉科技有限公司 (以下简称"赛昉科技")保留对本协议中的任何内容进行 更改的权利, 恕不另行通知。

赛昉科技明确否认任何形式的担保、解释和条件,无论是明示的还是默示的,包括但不限于 适销性、特定用途适用性和非侵权的担保或条件。

赛昉科技无需承担因应用或使用任何产品或电路而产生的任何责任,并明确表示无需承担任 何及所有连带责任,包括但不限于间接、偶然、特殊、惩戒性或由此造成的损害。

本文件中的所有材料受版权保护,为赛昉科技所有。不得以任何方式修改、编辑或断章取义本文件中的说明,本文件或其任何部分仅限用于内部使用或教育培训。

联系我们:

地址: 浦东新区盛夏路61弄张润大厦2号楼502, 上海市, 201203, 中国

网站: <u>http://www.starfivetech.com</u>

邮箱:

- <u>sales@starfivetech.com</u>(销售)
- <u>support@starfivetech.com</u> (支持)

前言

关于本指南和技术支持信息

关于本手册

本手册主要为SDK开发和移植提供赛昉科技新一代SoC平台——昉·惊鸿7110的ISP编程基础和 调试操作。

受众

本手册主要服务与与SPI相关驱动程序的开发人员。如果您正在开发其他模块,请与您的销售 或支持顾问联系,获取我们在昉·惊鸿7110上的完整文档。

修订历史

表 0-1 修订历史

Version	发布说明	修订
1.0	2022/11/10	首次发布。

注释和注意事项

本指南中可能会出现以下注释和注意事项:

- **记** 提示: 建议如何在某个主题或步骤中应用信息。
- 2 注:

解释某个特例或阐释一个重要的点。

重要:

指出与某个主题或步骤有关的重要信息。

・ 💔 警告:

表明某个操作或步骤可能会导致数据丢失、安全问题或性能问题。

・ 警告:

表明某个操作或步骤可能导致物理伤害或硬件损坏。

目录

長格清单
插图清单
去律声明
f言i
. 简介
1.1. 功能介绍
1.2. 设备树概述
1.3. 设备树代码
1.4. 源代码结构
. 配置10
2.1. 内核菜单配置10
2.2. 设备树配置12
2.3. 板级配置1
. 驱动程序框架1
3.1. 框图
. 接口介绍
4.1. 接口定义1
4.2. spi_register_driver1
4.3. spi_message_init
. 示例用例
. 常见问题集

表格清单

+	0 1		
衣	0-1	修订历史	

冬	1-1	设备树工作流	8
冬	2-1	Device Drivers	. 10
冬	2-2	SPI support	.11
冬	2-3	SSP controller	.12
冬	3-1	框图	. 15
冬	5-1	User mode SPI device driver support	.21
冬	5-2	SPI测试示例	. 22
冬	6-1	DMA故障	. 23
冬	6-2	DMA故障解决方案	.23

1. 简介

串行外设接口(SPI)是微控制器和外设IC(如传感器、ADC、DAC、移位寄存器、SRAM等) 之间应用的最广泛的接口之一。

1.1. 功能介绍

昉·惊鸿7110 SOC平台在SPI上具有以下特点和规格:

- •支持7个SPI接口。
- •支持串口主模式和串口从模式,使用软件配置可在这两种模式之间进行切换。
- •为输入和输出提供单独的数据位。
- •为TX和RX通道提供大小最高达8位×16位的可配置FIFO。
- 支持对TX和RX FIFO的DMA访问。

1.2. 设备树概述

自Linux 3.x以来,系统就引入了设备树作为数据结构和语言来描述硬件配置。设备树是硬件设置的系统可读描述,这样操作系统不必硬编码机器的详细信息。

一个设备树主要有以下呈现形式。

- •设备树编译器(DTC):用于将设备树编译为系统可读的二进制文件的工具。
- 设备树源码(DTS): 人类可读的设备树描述文件。您可以在此文件中找到目标参数并 修改硬件配置。
- 设备树源码信息(DTSI): 可包括在设备树描述中的人类可读的头文件。您可以在此文件中找到目标参数并修改硬件配置。
- •设备树块(DTB):系统可读设备树二进制blob文件,在系统中烧录以供执行。

下图显示了上述形式的关系(工作流)。

图 1-1 设备树工作流

1.3. 设备树代码

总体结构

防·惊鸿7110的设备树代码如下:

linux
⊢ arch
riscv
_ boot
$ $ $ $ $ $ $ $ dts
L starfive
codecs
sf_pdm.dtsi
sf_pwmdac.dtsi
sf_spdif.dtsi
sf_tdm.dtsi
sf_wm8960.dtsi
evb-overlay
jh7110-evb-overlay-can.dts
jh7110-evb-overlay-rgb2hdmi.dts
jh7110-evb-overlay-sdio.dts
jh7110-evb-overlay-spi.dts
jh7110-evb-overlay-uart4-emmc.dts
jh7110-evb-overlay-uart5-pwm.dts
│
jh7110-clk.dtsi
jh7110-common.dtsi
jh7110.dtsi

	Ι		└── jh7110-evb-can-pdm-pwmdac.dts
Ι			⊣ jh7110-evb.dts
1		1	⊣ jh7110-evb.dtsi
Ι			└── jh7110-evb-dvp-rgb2hdmi.dts
Ι			└── jh7110-evb-pcie-i2s-sd.dts
Ι	Ι	1	⊣ jh7110-evb-pinctrl.dtsi
T			└── jh7110-evb-spi-uart2.dts
I			├── jh7110-evb-uart1-rgb2hdmi.dts
I	Ι	1	└── jh7110-evb-uart4-emmc-spdif.dts
I			└── jh7110-evb-uart5-pwm-i2c-tdm.dts
I			⊣ jh7110-fpga.dts
I	Ι	1	└── jh7110-visionfive-v2.dts
1			├─ Makefile
1			└─ vf2-overlay
I	Ι	1	├─ Makefile
			└─ vf2-overlay-uart3-i2c.dts

SoC平台

昉·惊鸿7110 SoC平台的设备树源代码在以下路径:

freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110.dtsi

昉·星光 2

昉·星光 2 单板计算机(SBC)的设备树源代码在以下路径:

freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110-visionfive-v2.dts

-- freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110-common.dtsi

-- freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110.dtsi

1.4. 源代码结构

以下为自Linux 5.15以来SPI的源代码:

- •drivers/spi/spi.c: 该文件包含针对SPI驱动程序框架的源代码。
- drivers/spi/spidev.c: 该文件包含用于创建SPI设备节点并在用户模式下使用的 源代码。
- •drivers/amba/bus.c: 该文件包含通过AMBA总线注册平台设备的源代码。
- driver/spi/spi-pl022-starfive.c: 该文件包含赛昉科技昉·惊鸿7110平台上 SPI控制器驱动程序的源代码。
- •tools/spi/spidev_test.c: 该文件包含处于用户模式下的SPI测试工具。

2. 配置

2.1. 内核菜单配置

执行以下步骤,创建SPI内核配置:

1. 在freelight-u-sdk的根目录下,输入以下命令以进入内核菜单配置GUI。

make linux-menuconfig

2. 进入**Device Drivers**菜单。

图 2-1 Device Drivers

3. 选择SPI support菜单。

图 2-2 SPI support

4. 选择SSP controller选项。

图 2-3 SSP controller

<pre>SPI support Arrow keys navigate the menu. <entry and="" states="" states<="" subtractions="" th=""><th>.config - Linux/riscv 5.15.0 Kernel Configuration > Device Drivers > SPI support</th></entry></pre>	.config - Linux/riscv 5.15.0 Kernel Configuration > Device Drivers > SPI support
<pre> SPI support [] Debug support for SPI drivers [] SPI memory extension</pre>	SPI support Arrow keys navigate the menu. <enter> selects submenus> (or empty submenus). Highlighted letters are hotkeys. Pressing <y> includes, <n> excludes, <m> modularizes features. Press <esc> to exit, <? > for Help, for Search. Legend: [*] built-in [] excluded <m> module <> module capable</m></esc></m></n></y></enter>
<pre>< > Analog Devices AXI SPI Engine controller < Utilities for Bitbanging SPI masters < > Cadence SPI controller core support < > NXP Flex SPI controller and Aeroflex Gaisler GRLIB SPI controller < > Freescale SPI controller and Aeroflex Gaisler GRLIB SPI controller < > CpenCores tiny SPI < ARM AMBA PL022 SSP controller < * ARM AMBA PL022 SSP controller < * PXA2xx SSP SPI master < > PCLSIBIS602/6028/603 I2C to SPI bridge <*> SiFive SPI controller < > Macronix MX25F0A SPI controller < > Xilinx SPI controller < > Xilinx SPI controller < > MD SPI controller < > SiFive SPI controller < > Xilinx SPI controller < > SPI multiplexer support *** SPI Multiplexer support *** SPI multiplexer support </pre>	SPI support [] Debug support for SPI drivers [] SPI memory extension *** SPI Master Controller Drivers *** < > Altera SPI Controller platform driver
<pre>< > Freescale SPI controller and Aeroflex Gaisler GRLIB SPI controller < > OpenCores tiny SPI < > ARM AMBA PL022 SSP controller < > PXA2xx SSP SPI master < > PXA2xx SSP SPI master < > Rockchip SPI controller driver < > NxP SC18IS602/602 I2C to SPI bridge <*> Sifive SPI controller < > Macronix MX25F0A SPI controller < > Analog Devices AD-FMCOMMS1-EBZ SPI-I2C-bridge driver < > Xilinx SPI controller commodule < > Xilinx SPI controller < > AMD SPI controller < *** SPI Multiplexer support *** <> SPI multiplexer support *** SPI Protocol Masters *** </pre>	<pre>< > Analog Devices AXI SPI Engine Controller < > Utilities for Bitbanging SPI masters < > Cadence SPI controller < > DesignWare SPI controller core support < > NXP Flex SPI controller < > CPIO-based bitbanging SPI Master</pre>
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre>< > Freescale SPI controller and Aeroflex Gaisler GRLIB SPI controller < > OpenCores tiny SPI < > ARM AMBA PL022 SSP controller <*> ARM AMBA PL022 SSP controller on StarFive SoC platform < > PXA2xx SSP SPI master < > Bockchin SPI controller driver</pre>
<pre>< > Xilinx ZynqMP GQSPI controller <> AMD SPI controller *** SPI multiplexer support *** <> SPI multiplexer support *** SPI Protocol Masters *** <*> User mode SPI device driver support (+) <<u>Select></u> < Exit > < Help > < Save > < Load ></pre>	<pre>< > NXP SC18I5602/602B/603 I2C to SPI bridge <*> SiFive SPI controller < > Macronix MX25F0A SPI controller < > Analog Devices AD-FMCOMMS1-EBZ SPI-I2C-bridge driver < > Xilinx SPI controller common module</pre>
<pre> L L(+) </pre> <pre> Select> < Exit > < Help > < Save > < Load > </pre>	<pre>< Xilinx ZynqMP GQSPI controller < > AMD SPI controller *** SPI Multiplexer support *** < > SPI multiplexer support *** SPI Protocol Masters *** user mode SPI device driver support</pre>
	<pre> Select> < Exit > < Help > < Save > < Load > </pre>

5. 保存更改,并退出内核配置对话框。

2.2. 设备树配置

SPI的设备树源代码在以下路径:

freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110.dtsi

下面的代码为设置SPIO的示例。

```
spi0: spi@10060000 {
    compatible = "arm,pl022", "arm,primecell";
    reg = <0x0 0x10060000 0x0 0x10000>;
    clocks = <&clkgen JH7110_SPI0_CLK_APB>;
    clock-names = "apb_pclk";
    resets = <&rstgen RSTN_U0_SSP_SPI_APB>;
    reset-names = "rst_apb";
    interrupts = <38>;
    /* shortage of dma channel that not be used */
    /* dmas = <&dma 14 1>, <&dma 15 1>;*/
    /* dma-names = "rx","tx";*/
    arm,primecell-periphid = <0x00041022>;
```

```
num-cs = <1>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
```

以下提供了对上述代码块中的参数说明。

- compatible: 兼容性信息, 用于连接驱动程序和目标设备。
- •reg:寄存器基本地址"0x10060000"和范围"0x10000"。
- clocks: SPI模块使用到的时钟。
- clock-names:上述时钟的名称。
- resets: SPI模块使用到的复位信号。
- reset-names: 上述复位信号的名称。
- interrupts: 硬件中断ID。
- primecell-periphid: SPI设备的外设ID。
- •num-cs:片选信号的总数。
- status: SPI模块的工作状态。要启用模块,请将此位设置为"okay";要禁用该模块,请将此位设置为"disabled"。

2.3. 板级配置

板级设备树文件(DTSI文件)存储所有其他板级设备中相同的信息。(例 如, common.dtsi、pinctrl.dtsi和 evb.dts等文件。)

common.dtsi文件在以下路径:

freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110-common.dtsi

```
文件中, spi0有以下设置。
```

```
&spi0 {
    pinctrl-names = "default";
    pinctrl-0 = <&ssp0_pins>;
    status = "disabled";
    spi_dev0: spi@0 {
        compatible = "rohm,dh2228fv";
        pl022,com-mode = <1>;
        spi-max-frequency = <10000000>;
        reg = <0>;
        status = "okay";
    };
};
```

以下为上述代码中配置位的描述:

- spi-max-frequency:编辑此位以配置SPI的通信时钟频率。
- status:编辑此位以定义是否启用此模块。

昉·星光2板级配置

pinctrl.dtsi文件包含pin控制配置。文件在以下路径:

freelight-u-sdk/linux/arch/riscv/boot/dts/starfive/jh7110-visionfive-v2.dts

```
以下代码块提供了spi0使用的pin的示例,包括tx(收发器)、rx(接收器)、clk(时钟)
和cs(片选)信号。
```

```
ssp0 pins: ssp0-pins {
        ssp0-pins_tx {
                sf,pins = <PAD_GPI052>;
                sf,pinmux = <PAD_GPI052_FUNC_SEL 0>;
                sf,pin-ioconfig = <IO(GPIO_IE(1))>;
                sf,pin-gpio-dout = <GPO_SPI0_SSPTXD>;
                sf,pin-gpio-doen = <OEN_LOW>;
        };
        ssp0-pins_rx {
                sf,pins = <PAD_GPI053>;
                sf,pinmux = <PAD GPI053 FUNC SEL 0>;
                sf,pin-ioconfig = <IO(GPIO_IE(1))>;
                sf,pin-gpio-doen = <OEN_HIGH>;
                sf,pin-gpio-din = <GPI_SPI0_SSPRXD>;
        };
        ssp0-pins_clk {
                sf,pins = <PAD GPI048>;
                sf,pinmux = <PAD_GPIO48_FUNC_SEL 0>;
                sf,pin-ioconfig = <IO(GPIO_IE(1))>;
                sf,pin-gpio-dout = <GPO_SPI0_SSPCLKOUT>;
                sf,pin-gpio-doen = <OEN_LOW>;
        };
        ssp0-pins_cs {
                sf,pins = <PAD_GPI049>;
                sf,pinmux = <PAD_GPIO49_FUNC_SEL 0>;
                sf,pin-ioconfig = <IO(GPIO_IE(1))>;
                sf,pin-gpio-dout = <GPO_SPI0_SSPFSSOUT>;
                sf,pin-gpio-doen = <OEN_LOW>;
        };
};
```

3. 驱动程序框架

3.1. 框图

下图显示了SPI驱动程序框架的3个层级。

图 3-1 框图

以下是对上图中每一层的描述。

用户空间

用户空间层包括使用SPI设备的所有应用程序。在这一层中,用户可以根据他们的特定需求定制他们的SPI设备。

内核空间

内核空间层可分为以下三个部分。

• SPI设备驱动程序层:

Linux内核并不提供特定的SPI设备驱动程序,因为SPI上可能连接各种设备。用户必须使 用通用的SPI设备驱动程序,该驱动程序只能以同步模式与SPI设备通信。因此,该层只 支持一些简单而非需要消耗大量数据的设备。

在这一层中,我们提供了spidev.c作为标准的SPI驱动程序,而spi-nand.c作为SPI 的NAND驱动程序。

• SPI通用接口封装层:

为了简化SPI驱动程序的编程,减少驱动程序的耦合,Linux内核为控制器和协议打包封 装了一些通用的驱动程序,形成了SPI通用接口封装层。

在这一层中,我们提供了Linux自带的驱动程序spi.c。

• SPI控制器驱动程序层:

这一层是我们关注的重点,它将在文档的后面部分中详细介绍。

在这一层中,我们提供了驱动程序spi-p1022-star5.c。

硬件

硬件层是物理设备层。在这一层中, SPI控制器和所连接的SPI设备通过SPI总线与CPU进行通信。

4. 接口介绍

4.1. 接口定义

SPI的接口定义在该文件中: include/linux/spi/spi.h, 主要的接口 有**spi_register_driver**和**spi_message_init**。

宏module_spi_driver()用于快速注册一个SPI设备。

以下代码为一个示例:

```
#define module_spi_driver(__spi_driveSPI\module_driver(__spi_driver,
    spi_register_driver,\spi_unregister_driver)
```

4.2. spi_register_driver

该接口有以下参数。

• 简介∶

int spi_register_driver(struct spi_driver *sdrv)

- 描述: 该接口用于注册一个SPI设备的驱动程序。
- 参数:

。sdrv: spi_driver类型,包括SPI设备名、探测接口信息等。

・返回値:

成功: 0。

·失败:除0外的其他值。

4.3. spi_message_init

该接口有以下参数。

•简介:

```
void spi_message_init(struct spi_message *m)
```

- 描述: 该接口用于初始化SPI信息结构, 以清除或初始化传输队列。
- •参数:

。m: SPI信息类型。

• **返回值**:无。

5. 示例用例

以下列出了昉·惊鸿7110 SPI的典型用例。

查找原始内核驱动程序

驱动程序文件在以下路径:

freelight-u-sdk/linux/drivers/spi/spidev.c

该驱动程序是一个Linux嵌入式SPI设备驱动程序。

注册一个SPI驱动程序

您可以使用<u>spi_register_driver (第 17页)</u>接口来注册一个SPI驱动程序,作为SPI消息读写的基础。

以下代码为一个示例:

```
static int __init spidev_init(void)
{
int status;
/* Claim our 256 reserved device numbers. Then register a class
 * that will key udev/mdev to add/remove /dev nodes. Last, register
  * the driver which manages those device numbers.
 */
BUILD_BUG_ON(N_SPI_MINORS > 256);
status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
if (status < 0)
 return status;
 spidev_class = class_create(THIS_MODULE, "spidev");
if (IS_ERR(spidev_class)) {
 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
 return PTR_ERR(spidev_class);
 }
status = spi_register_driver(&spidev_spi_driver);
if (status < 0) {
 class_destroy(spidev_class);
 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
 }
return status;
module init(spidev init);
```

配置SPI驱动程序

同时,确保您已在dts文件中为SPI控制器添加了子设备的设备信息描述。

以下代码以spi0为例:

```
&spi0 {
    pinctrl-names = "default";
    pinctrl-0 = <&ssp0_pins>;
    status = "disabled";
    spi_dev0: spi@0 {
        compatible = "rohm,dh2228fv";
        pl022,com-mode = <1>;
        spi-max-frequency = <10000000>;
        reg = <0>;
        status = "okay";
};
```

配置文件spi_dev0包含以下参数。

- compatible: 驱动程序的兼容性信息。
- •pl022,com-mode: 驱动程序的通信模式。以下为可用值:
 - •0:轮询
 - ∘1: 中断
 - 2: DMA
- spi-max-frequency:从设备最大频率值
 - / 注:

确保您根据实际情况设置了正确的最大频率值,如果配置了不正确的值,可能 会导致传输中的数据丢失。

- reg:从设备的寄存器地址偏移量。
- status:从设备的状态。以下为可用值:

。okay:从设备工作正常。

。disabled:从设备被禁用。

配置内核菜单

在内核菜单配置页面,请选择User mode SPI device driver support选项。

图 5-1 User mode SPI device driver support

<pre>.config - Linux/Fiscv 5.15.0 > Device Drivers > SPT suppor</pre>	Kernel Configuration 'f
Arrow keys pavigate the m	SPI support
are hotkeys. Pressing <y for Help, </y 	<pre>> includes, <n> excludes, <m> modularizes features. Press <esc> to exit, <?> . Legend: [*] built-in [] excluded <m> module < > module capable</m></esc></m></n></pre>
SPI	support
	BU merry extension
	P1 memory extension
	ters SDI Controller platform driver
	nalog Devices AXI SPI Engine controller
	tilities for Bithanging SPT masters
	adence SPI controller
	esignWare SPI controller core support
< > 1	NP Flex SPI controller
< > (PIO-based bitbanging SPI Master
< >	reescale SPI controller and Aeroflex Gaisler GRLIB SPI controller
< > (penCores tiny SPI
< > /	RM AMBA PL022 SSP controller
<*> /	RM AMBA PL022 SSP controller on StarFive SoC platform
< > F	XA2xx SSP SPI master
< > F	ockchip SPI controller driver
< > N	XP SC18IS602/602B/603 I2C to SPI bridge
<*>	iFive SPI controller
A < >	Macronix MX25F0A SPI controller
< > /	nalog Devices AD-FMCOMMS1-EBZ SPI-I2C-bridge driver
< > >	(ilinx SPI controller common module
< > >	(ilinx ZynqMP GQSPI controller
< > /	MD SPI controller
*	*** SPI Multiplexer support ***
< >	PI multiplexer support
,	*** SPI Protocol Masters ***
<*> [ser mode SPI device driver support
< >	pt toopback test tramework support
< > I	It shows protocol handlars
	Fi stave protocot handters
	<pre><select> < Exit > < Help > < Save > < Load ></select></pre>

构建SPI文件

完成固件安装后,按照以下步骤构建SPI文件。

- 1. 在/dev/文件夹下找到spidevX.0 (X=1-7) 设备。
- 2. 在文件上执行读写操作。或者您可以使用Linux SPI工具,并在路径下运行以下命令:

freelight-u-sdk/linux/tools

3. 执行以下命令,构建用于测试的SPI文件。

make spi

结果: freelight-u-sdk/linux/tools/spi路径下生成可执行文 件spidev_test。

测试SPI文件

按照以下步骤测试已生成额SPI文件。

- 1. 将生成的文件复制到SoC中,并连接SPI上的I/O接口的TX和RX。
- 2. 然后运行以下测试命令:

/spidev_test -D /dev/spidevX.0 -v -p data

结果:系统将显示您要传输的内容,测试示例如下:

图 5-2 SPI测试示例

6. 常见问题集

以下列出了有关SPI的常见问题。

DMA故障

问题描述: DMA模式无法从内核加载日志。

下图为一个加载失败的示例。

图 6-1 DMA故障

6.625672] ssp-pl022 10060000.spi: ARM PL022 driver for StarFive SoC platform, device ID: 0x00041022 6.634827] ssp-pl022 10060000.spi: mapped registers from 0x0000000010060000 to (____ptrval____) 6.643704] ssp-pl022 10060000.spi: Failed to work in dma mode, work without dma!

分析:这是正常情况,因为DMA没有在设备树中配置。DMA通道较少,不能完全满足需求,SPI不使用DMA通道进行传输。

解决方法:如果要使用DMA通道进行传输,则应更改设备树并添加DMA配置。

下图中方框部分提供了一个示例解决方案。

图 6-2 DMA故障解决方案

spi	0: spi@10060000 {
	<pre>compatible = "arm,pl022", "arm,primecell";</pre>
	reg = <0x0 0x10060000 0x0 0x10000>;
	<pre>clocks = <&clkgen JH7110_SPI0_CLK_APB>;</pre>
	<pre>clock-names = "apb_pclk";</pre>
	<pre>resets = <&rstgen RSTN_U0_SSP_SPI_APB>;</pre>
	<pre>reset-names = "rst_apb";</pre>
	<pre>interrupts = <38>;</pre>
	<pre>/* shortage of dma channel that not be used */</pre>
	dmas = <&dma 14 1>, <&dma 15 1>;
	dma-names = "rx","tx";
	arm,primecell-periphid = <0x00041022>;
	num-cs = <1>;
	#address-cells = <1>;
	<pre>#size-cells = <0>;</pre>
	<pre>status = "disabled";</pre>
};	