

昉·星光 2 AI套件操作指南

版本: 1.1 日期: 2024/11/29 Doc ID: VisionFive 2-QSGCH-002

法律声明

阅读本文件前的重要法律告知。

版权注释

版权 ©广东赛昉科技有限公司, 2024。版权所有。

本文档中的说明均基于"视为正确"提供,可能包含部分错误。内容可能因产品开发而定期更新或修订。广东赛昉科技有限公司(以下简称"赛昉科技")保留对本协议中的任何内容进行更改的权利,恕不另行通知。

赛昉科技明确否认任何形式的担保、解释和条件,无论是明示的还是默示的,包括但不限于适销性、特定用途适用性和 非侵权的担保或条件。

赛昉科技无需承担因应用或使用任何产品或电路而产生的任何责任,并明确表示无需承担任何及所有连带责任,包括但 不限于间接、偶然、特殊、惩戒性或由此造成的损害。

本文件中的所有材料受版权保护,为赛昉科技所有。不得以任何方式修改、编辑或断章取义本文件中的说明,本文件或 其任何部分仅限用于内部使用或教育培训。使用文件中包含的说明,所产生的风险由您自行承担。赛昉科技授权复制本 文件,前提是您保留原始材料中包含的所有版权声明和其他相关声明,并严格遵守此类条款。本版权许可不构成对产品 或服务的许可。

联系我们:

地址: 广东省佛山市顺德区大良街道云路社区昊阳路2号A区S201室

网站: <u>http://www.starfivetech.com</u>

邮箱: <u>sales@starfivetech.com</u>(销售) <u>support@starfivetech.com</u>(支持)

Contents

st of Tables4	
st of Figures5	
方言	
. 简介7	
. 前期准备	
2.1. 硬件准备	
2.2. 软件准备	
. 编译	
. 演示案例	
. 附录	

List of Tables

目录

List of Figures

Figure 2-1 时	方·星光 2 AI套件
Figure 2-2 进	•择选项110
Figure 3-1 缺	史少头文件
Figure 3-2 报	3错11
Figure 3-3 H	lailo-8L模块信息12
Figure 4-1 刃	F启Hailo Monitor13
Figure 4-2 指	旨定环境变量
Figure 4-3 🖞	盐测数据13
Figure 4-4 修	§改启动脚本
Figure 4-6 报	及错
Figure 4-7 报	灵错

前言

关于本指南和技术支持信息

关于本手册

用户通过该手册能快速获取有关赛昉科技昉·星光 2 AI套件的基本信息和编译方法,包括前期软硬件准备、编译、演示案例等。

修订历史

Table 0-1 修订历史

版本	发布说明	修订	
1.1	2024/11/29	替换使用Hailo-8L型号。	
1.0	2024/11/07	首次发布。	

注释和注意事项

•

本指南中可能会出现以下注释和注意事项:

- *i* Tip: 建议如何在某个主题或步骤中应用信息。
- Note:

解释某个特例或阐释一个重要的点。

Important:

指出与某个主题或步骤有关的重要信息。

表明某个操作或步骤可能会导致数据丢失、安全问题或性能问题。

Warning:

表明某个操作或步骤可能导致物理伤害或硬件损坏。

1. 简介

昉·星光 2 AI套件由赛昉科技携手边缘人工智能(AI)处理器的领先芯片制造商Hailo共同推出,旨在为边缘计算、工业 智能、安全、机器人、网关路由、智能家居等领域应用提供最具性价比的高性能RISC-V人工智能解决方案。

防·星光 2 AI套件包括防·星光 2高性能RISC-V单板计算机,以及Hailo-8L M.2 AI加速模块:以防·星光 2作为平台,移植 并运行了HailoRT、HailoRT-driver、Tappas等组件,通过PCle与Hailo的 Hailo-8L NPU模块结合,实现了AI应用的加速, 成功运行了YOLOv5、YOLOv8、MobileNet_SSD等模型。该套件具有低延迟和低功耗等优势,可快速构建复杂的AI视觉 应用程序,高效执行深度学习推理任务,如目标检测、姿态检测、图像分割和人脸识别等。

2. 前期准备

本章主要介绍了昉·星光 2 AI套件操作所需的准备,包括:

- <u>硬件准备 (on page 8)</u>
- <u>软件准备 (on page 8)</u>

2.1. 硬件准备

所需硬件

- 昉·星光 2
- •32 GB(或更大)的Micro SD卡
- Hailo-8L M.2 AI加速模块
- USB摄像头(型号: logi HD 1080P)
- HDMI显示器
- 散热器或风扇(用于Hailo-8L M.2 AI加速模块散热)
- 键盘
- •鼠标

连接方式

Hailo-8L M.2 AI加速模块通过M.2 M-Key接入昉·星光 2,如下图:

Tip:
 建议加上散热器或用风扇进行散热。

Figure 2-1 昉·星光 2 AI套件

2.2. 软件准备

本节介绍了以下三个所需软件准备:

- <u>所需镜像/代码版本 (on page 9)</u>
- <u>镜像烧录/依赖库安装 (on page 9)</u>
- 获取源码并应用补丁 (on page 10)

所需镜像/代码版本

- <u>Debian12</u> (202409)
- <u>debian-deb</u> (为适配hailo所需更新的Debian内核包等文件)
- Tappas (v3.30.0, daffd36ecab5110d47107255fd7ec4c779758f2e)
- HailoRT (v4.19.0, ac19e12b86170e1b0967e7d8aa607a0100cb0077)
- HailoRT-driver (v4.19.0, eb2a8649752abd424c6d2e5109e9ec92d6d2d5f6)
- <u>Hailort与Tappas补丁</u>(用于适配昉·星光 2的HailoRT与Tappas补丁)
- <u>NpuDetectorLib demo</u>

镜像烧录/依赖库安装

1. 请参考<u>该链接</u>,将Debian烧录到SD卡。

后续操作建议均在user用户下操作,避免root下操作导致权限异常。

2. 更新内核、头文件等:

```
a. 执行以下命令, 下载并解压hailort-deb-1.tar.gz文件:
```

\$ tar -xzvf hailort-deb-1.tar.gz

b. 执行以下命令,更新u-boot-menu:

```
$ cd hailort-deb
$ sudo dpkg -i u-boot-menu_4.2.2-SF113_all.deb
```

- c. 执行以下命令,更新内核、头文件、libc库以及VPU驱动:
 - \$ cd 6.6 \$ sudo dpkg -i ./*
- d. 执行以下命令, 重启系统:

\$ sudo reboot

3. 执行以下命令, 安装编译环境依赖:

\$ sudo apt install make cmake automake build-essential autoconf bc bison meson flex wget curl git git-lfs libgirepository1.0-dev gcc g++ rsync xll-utils -y

4. 安装Python环境。安装python3-platformdirs,新版本Snapshot不支持低于3.0版本的python3-platformdirs,需要手动获取并安装:

```
$ wget
```

```
https://snapshot.debian.org/archive/debian/20221210T034654Z/pool/main/p/platformdirs/python3-platformd
irs_2.6.0-1_all.deb && sudo dpkg -i python3-platformdirs_2.6.0-1_all.deb
$ sudo apt install python3.11 python3.11-dev python3-setuptools python3-virtualenv python3-pip
python-gi-dev -y
```

5. 执行以下命令, 安装GStreamer相关库:

```
$ sudo apt install libgstreamer-plugins-bad1.0-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev
-y
```

6. 执行以下命令,安装OpenCV与GStreamer插件:

\$ sudo apt install libopencv*-dev libssl-dev pciutils libcairo2-dev libzmq3-dev gstreamer1.0-tools -y

7. 执行以下命令, 安装Rust:

编译pydantic等包时需要该语言。

\$ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

如下图所示, 弹出Rust安装选项时, 请选择选项1:

Figure 2-2 选择选项1

1) Proceed with standard installation (default - just press enter) 2) Customize installation 3) Cancel installation >1

完成安装后,添加Rust的环境变量:

\$ source "\$HOME/.cargo/env"

8. 执行以下命令,指定python3为python3.11:

\$ sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1

获取源码并应用补丁

- •执行以下命令,获取Tappas源码并应用:
 - \$ git clone https://github.com/hailo-ai/tappas.git
 - \$ **cd** tappas
 - \$ git checkout daffd36ecab5110d47107255fd7ec4c779758f2e
 - \$ cp path_to_hailo_patches/tappas_h8l/* ./
 - \$ git apply 0001-Added-tappas-adaptation-to-VisionFive2.patch
 - \$ git apply 0002-Add-demo-for-h8l-on-vf2.patch
- •执行以下命令,获取HailoRT源码并应用:

Note: 请拉取并存放在tappas路径下,便于后续Tappas编译。

\$ **mkdir** -p tappas/hailort

- \$ cd tappas/hailort
- \$ git clone https://github.com/hailo-ai/hailort.git sources
- \$ cd source

\$ cd ~

- \$ git checkout ac19e12b86170e1b0967e7d8aa607a0100cb0077
- \$ cp path_to_hailo_patches/0001-Added-HailoRT-adaptation-to-VisionFive2.patch ./
- \$ git apply 0001-Added-HailoRT-adaptation-to-VisionFive2.patch

•执行以下命令,获取HailoRT-drivers源码并应用:

```
$ git clone https://github.com/hailo-ai/hailort-drivers.git
```

```
$ cd hailort-driver
```

\$ git checkout eb2a8649752abd424c6d2e5109e9ec92d6d2d5f6

3. 编译

HailoRT

1. 执行以下命令,编译HailoRT:

```
$ cd tappas/hailort/sources
```

```
$ cmake -S. -Bbuild -DCMAKE_BUILD_TYPE=Release -DHAILO_BUILD_GSTREAMER=1
```

 $\$ sudo cmake --build build --config release --target gsthailo install -j4

如下图所示, HailoRT编译安装完毕后, HailoRT的头文件安装路径下缺少了hailort_dma_heap.h头文件, 需 要自行拷贝到对应路径下:

Figure 3-1 缺少头文件

Figure 3-1 缺少头文	(件	
user@starfive:/usr/loc	al/include/hailo\$ ls	
buffer.hpp	hailort_common.hpp	platform.h
device.hpp	hailort defaults.hpp	quantization.hpp
dma_mapped_buffer.hpp	hef.hpp	runtime_statistics.hpp
event.hpp	infer model.hpp	stream.hpp
expected.hpp	inference pipeline.hpp	transform.hpp
hailort.h	network_group.hpp	vdevice.hpp
hailort.hpp	<pre>network_rate_calculator.hpp</pre>	vstream.hpp
user@starfive:/usr/loc	al/include/hailo\$ ls /home/us	er/tappas/hailort/sources/hailort/libhailort/include/hailo/
buffer.hpp	hailort_defaults.hpp	quantization.hpp
device.hpp	hailort_dma-heap.h	runtime_statistics.hpp
dma_mapped_buffer.hpp	hef.hpp	stream.hpp
event.hpp	infer_model.hpp	transform.hpp
expected.hpp	inference_pipeline.hpp	vdevice.hpp
hailort.h	network_group.hpp	vstream.hpp
hailort.hpp	<pre>network_rate_calculator.hpp</pre>	
hailort_common.hpp	platform.h	
usor@starfive:/usr/loc	al/includo/hailo¢	

2. 执行以下命令,将hailort_dma_heap.h头文件自行拷贝到对应路径下:

\$ sudo cp hailort/libhailort/include/hailo/hailort_dma-heap.h /usr/local/include/hailo/

否则在Tappas编译安装时会遇到以下错误:

Figure 3-2 报错

Build files have been written to: /home/user/tappas/hailort/sources/hailort/libhailort/bindings/gstreamer/build
[6%] Building CXX object CMakeFiles/gsthailo.dir/gst-hailo/gsthailoplugin.cpp.o
In file included from /home/user/tappas/hailort/sources/hailort/libhailort/bindings/gstreamer/gst-hailo/os/linux/dma_b
uf_allocator_wrapper.hpp:24,
from /home/user/tappas/hailort/sources/hailort/libhailort/bindings/gstreamer/gst-hailo/gsthailonet.hp
p:31,
from /home/user/tappas/hailort/sources/hailort/libhailort/bindings/gstreamer/gst-hailo/gsthailoplugin
.cpp:23:
/home/user/tappas/hailort/sources/hailort/libhailort/bindings/gstreamer/gst-hailo/os/linux///gsthailo dmabuf alloc
ator.hpp:24:10: fatal error: hailo/hailort dma-heap.h: No such file or directory
24 #include "hailo/hailort dma-heap.h"
^линининининининини
compilation terminated.
<pre>gmake[2]: *** [CMakeFiles/gsthailo.dir/build.make:76: CMakeFiles/gsthailo.dir/gst-hailo/gsthailoplugin.cpp.o] Error 1</pre>
gmake[1]: *** [CMakeFiles/Makefile2:83: CMakeFiles/gsthailo.dir/all] Error 2
gmake: *** [Makefile:136: all] Error 2

HailoRT-driver

- 1. 执行以下命令,编译HailoRT-driver:
 - \$ cd hailort-drivers/linux/pcie
 - \$ make all -j\$(nproc)
 - \$ sudo make install
 - \$ sudo modprobe hailo_pci
- 2. 固件下载与自动加载设置。
 - a. 执行以下命令, 进入pcie-driver源码顶层路径下:
 - \$ cd hailort-drivers
 - \$./download_firmware.sh
 - \$ sudo mkdir -p /lib/firmware/hailo/
 - \$ sudo mv hailo8_fw.<VERSION>.bin /lib/firmware/hailo/hailo8_fw.bin

\$ sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/

\$ sudo udevadm control --reload-rules && sudo udevadm trigger

<VERSION>与当前HailoRT-driver版本相同,自行查看确认,此例中为4.19.0。

b. HailoRT-driver的上述操作完成后需要执行重启,重启后可通过以下命令验证HailoRT与HailoRT-driver是 否正常编译安装:

\$ hailortcli fw-control identify

可查看连接的Hailo-8L模块信息:

Figure 3-3 Hailo-8L模块信息 user@starfive:~\$ hailortcli fw-control identify Executing on device: 0001:01:00.0 Identifying board Control Protocol Version: 2 Firmware Version: 4.19.0 (release,app,extended context switch buffer) Logger Version: 0 Board Name: Hailo-8 Device Architecture: HAIL08L Serial Number: HLDDLBB234500007 Part Number: HM21LB1C2LAE Product Name: HAIL0-8L AI ACC M.2 B+M KEY MODULE EXT TMP

Tappas

进入Tappas源码顶层目录:

- \$ cd tappas/
- $\$./install.sh --skip-hailort --target-platform vf2
- \$ source /home/user/.hailo/tappas/tappas_env

4. 演示案例

系统设置

开机后建议关闭CPU自动调频,在root下执行以下命令:

\$ su -

\$ echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

开启HailoRT的Monitor(可选)

1. 执行以下命令,开启Hailo monitor,实时监控NPU设备的利用率,使用的模型以及输出的FPS等数据:

\$ hailortcli monitor

Figure 4-1 开启Hailo Monitor

÷	user@stai	rfive: ~	
Device ID	Utilization (%) Archited	ture	
Model	Utilization (%) FPS	PID	
Model	Stream	Direction	Frames Queue Avg Max Min Capacity
lonitor did not retrieve any files f this is not the case, verify th	. This occurs when there is no application currently runnin at environment variable 'HAILO_MONITOR' is set to 1.	ig.	

2. 另开一个shell(此shell必须为运行演示程序的shell),指定环境变量:

\$ export HAILO_MONITOR=1

Figure 4-2 指定环境变量

user@starfive:~/tappas/apps/h8/gstreamer/vf2/detection\$ export HAILO_MONITOR=1 user@starfive:~/tappas/apps/h8/gstreamer/vf2/detection\$./detection.sh -i /dev/video4 --network yolov5

3. 执行演示案例时, HailoRT检测到此shell进程的*HAILO_MONITOR*变量为1,则会实时输出NPU模块的相关监测数据:

Figure 4-3 监测数据											
•		user@starfive: ~							٩		×
Device ID	Utilization (%)	Architecture									
0001:01:00.0	22.5	HAIL08									
Model	Utilization (%)	FPS	PID								
yolov5m_wo_spp_60p	22.5	15.0	4456								
Model	Stream			Direction	Avg	Fram Max	es Queue Min	Capacity			
voluv5m vo spp 66p voluv5m vo spp 66p voluv5m vo spp 66p voluv5m vo spp 66p	yolov5m wa spp.60p/inpu yolov5m wa spp.60p/convi yolov5m wa spp.60p/convi yolov5m wa spp.60p/convi yolov5m wa spp.60p/convi	:_layer1 33_132 34_132 44_132 44_132		H2D D2H D2H D2H	0.50 0.50 0.50 0.50	1 1 1	0 0 0	4 4 4 4		-	

Tappas演示案例

昉·星光 2下可直接使用Tappas下的部分演示案例。

Note:

由于Tappas下的演示案例使用的GStreamer videosink为xvimagesink以及ximagesink,而昉·星光 2的Debian使 用的Wayland协议,这些演示均需修改其启动脚本,将其中的video_sink_element中的ximagesink修改 为waylandsink:

Figure 4-4 修改启动脚本

video_sink_element=\$(["\$XV_SUPPORTED" = "true"] && echo "xvimagesink" || echo "ximagesink"

video sink element=\$(["\$XV SUPPORTED" = "true"] && echo "xvimagesink" || echo "waylandsink"

否则在运行时会产生以下报错:

Figure 4-6 报错

```
Setting pipeline to PAUSED ...
Config file doesn't exist, using default parameters
Pipeline is PREROLLING ...
Redistribute latency...
X Error of failed request: BadValue (integer parameter out of range for operation)
Major opcode of failed request: 131 (XInputExtension)
Minor opcode of failed request: 46 ()
Value in failed request: 0xd
Serial number of failed request: 51
Current serial number in output stream: 55
```

Instance_segmentation:

```
$ cd /home/user/tappas/apps/h8/gstreamer/vf2/instance_segmentation/
$ ./instance_segmentation.sh -i /dev/video4
```


Note:

命令中的/dev/video4指定使用USB Camera。

• Detection:

```
$ cd /home/user/tappas/apps/h8/gstreamer/vf2/detection/
$ ./detection.sh -i /dev/video4 --network yolov5
```

Note:

通过-network指定使用yolov5模型。

- Cascading_networks:
 - \$ cd /home/user/tappas/apps/h8/gstreamer/vf2/cascading_networks/
 - object_detection_and_pose_estimation用例:

```
$ ./object_detection_and_pose_estimation.sh -i /dev/video4
```

Note:

如出现以下报错,请检查是否缺少了TAPPAS_WORKSPACE环境变量。

Figure 4-7 报错

[HailORT] [error] CHECK failed - Failed opening file, path: /apps/h8/gstreamer/general/cascading_networks/resources/lightface_slim.hef
[HailORT] [error] CHECK_SUCCESS failed with status=HAILO_OPEN_FILE_FAILURE(13)
[HailORT] [error] Failed parsing HEF file
[HailORT] [error] Failed parsing HEF file
[HailORT] [error] Failed creating HEF
[HailORT] [error] Failed creating HEF
[HailORT] [error] CHECK_SUCCESS failed with status=HAILO_OPEN_FILE_FAILURE(13)
[HailORT] [error] Failed creating HEF
[HailORT] [error] CHECK_SUCCESS failed with status=HAILO_OPEN_FILE_FAILURE(13)
[HailORT] [error] CHECK_SUCCESS failed with statu

解决方法:可设置环境变量为export TAPPAS_WORKSPACE=path_to_tappas/tappas/,其中的path_to_tappas为Tappas源码目录所在路径。

NpuDetectorLib演示案例

- 1. 执行以下命令, 下载并编译NpuDetectorLib:
 - \$ tar -xvf NpuDetectorLib.tar
 - \$ cd NpuDetectorLib
 - \$ cmake -H. -Bbuild -DSHOW_LABEL=ON -DBUILD_TESTER=ON
 - \$ cmake --build build

2. 下载所需的资源:

\$ wget -0 models/yolov8s_nms.hef https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.13.0/hailo81/yolov8s.hef

3. 执行以下命令,进行目标识别演示:

\$./build/tests/TestExecutable -i /dev/video4 -m models/yolov8s_nms.json -a yolov8_nms

5. 附录

可点击<u>链接</u>,购买USB Camera。