

使用昉·星光 2的UART读取GPS数据

Python语言版本 应用说明 版本: 1.1 日期: 2023/06/08 Doc ID: VisionFive 2-ANCH-007

法律声明

阅读本文件前的重要法律告知。

版权注释

版权 ©上海赛昉科技有限公司, 2023。版权所有。

本文档中的说明均基于"视为正确"提供,可能包含部分错误。内容可能因产品开发而定期更新或修订。上海赛昉科技有限公司(以下简称"赛昉科技")保留对本协议中的任何内容进行更改的权利,恕不另行通知。

赛昉科技明确否认任何形式的担保、解释和条件,无论是明示的还是默示的,包括但不限于适销性、特定用途适用性和 非侵权的担保或条件。

赛昉科技无需承担因应用或使用任何产品或电路而产生的任何责任,并明确表示无需承担任何及所有连带责任,包括但 不限于间接、偶然、特殊、惩戒性或由此造成的损害。

本文件中的所有材料受版权保护,为赛昉科技所有。不得以任何方式修改、编辑或断章取义本文件中的说明,本文件或 其任何部分仅限用于内部使用或教育培训。使用文件中包含的说明,所产生的风险由您自行承担。赛昉科技授权复制本 文件,前提是您保留原始材料中包含的所有版权声明和其他相关声明,并严格遵守此类条款。本版权许可不构成对产品 或服务的许可。

联系我们:

地址: 浦东新区盛夏路61弄张润大厦2号楼502, 上海市, 201203, 中国

网站: <u>http://www.starfivetech.com</u>

邮箱: <u>sales@starfivetech.com</u>(销售) <u>support@starfivetech.com</u>(支持)

前言

关于本指南和技术支持信息

关于本手册

本应用指南提供了使用昉·星光 2的UART,通过Python示例程序读取GPS数据的步骤。

修订历史

表 0-1 修订历史

版本	发布说明	修订
1.1	2023/06/08	・在 <u>40-Pin GPIO Header定义 (第 7页</u>)増加注释。
		・在 <u>准备软件 (第 9页)</u> 中更新安装方式。
		• 新增 <u>资源下载 (第_18页)</u> 和 <u>立即购买 (第_19页)</u> 章节。
1.0	2022/12/15	首次发布。

注释和注意事项

•

本指南中可能会出现以下注释和注意事项:

- *i* 提示: 建议如何在某个主题或步骤中应用信息。
- 注: 解释某个特例或阐释一个重要的点。
- **重要:** 指出与某个主题或步骤有关的重要信息。
- ◆ 警告: 表明某个操作或步骤可能会导致数据丢失、安全问题或性能问题。
 - **!** 警告:

表明某个操作或步骤可能导致物理伤害或硬件损坏。

目录

表格清单	ō
f图清单	ô
<u>;</u> 律声明	ii
ý言i	ii
. 产品简介	7
1.1. 40-Pin GPIO Header定义	7
准备	3
2.1. 运行环境要求	3
2.2. 准备硬件	3
2.2.1. 连接硬件	3
2.3. 准备软件	9
. 执行演示代码1	2
. 演示源代码	4
. 资源下载	3
. 立即购买1	9

表格清单

表 0-1 修订历史	iii
表 2-1 硬件准备	8
表 2-2 将NEO-6M GPS连接到40-Pin GPIO Header上	8

插图清单

图 1-1 40-Pin GPIO Header定义	. 7
图 2-1 将NEO-6M GPS连接到40-Pin GPIO Header上	.9

1. 产品简介

本应用指南提供了使用昉·星光 2的UART,通过Python示例程序读取GPS数据的步骤。

1.1. 40-Pin GPIO Header定义

下图显示了40-pin GPIO Header的位置:

图 1-1 40-Pin GPIO Header定义

3.3V Power	1	• •	2	5V Power
GPIO58 (I2C SDA)	3	• •	4	5V Power
GPI057 (I2C SCL)	5	• • • •	6	GND
GPI055	7	• •	8	GPIO5 (UART TX)
GND	9		10	GPIO6 (UART RX)
GPIO42	11		12	GPIO38
GPIO43	13		14	GND
GPIO47	15	• •	16	GPIO54
3.3V Power	17	• •	18	GPIO51
GPIO52 (SPI MOSI)	19	• •	20	GND
GPIO53 (SPI MISO)	21		22	GPIO50
GPIO48 (SPI SCLK)	23	•	24	GPIO49 (SPI CEO)
GND	25		26	GPIO56
GPIO45	27		28	GPIO40
GPIO37	29	••	30	GND
GPIO39	31		32	GPIO46 (PWM0)
GPIO59 (PWM1)	33		34	GND
GPIO63	35		36	GPIO36
GPIO60	37		38	GPIO61
GND	39		40	GPIO44

功能复用pin脚已初始化,不可作为通用GPIO使用。

© 2018-2023 上海赛昉科技有限公司 版权所有

2. 准备

在执行演示程序之前,务必确认已准备好以下项目:

2.1. 运行环境要求

该演示运行环境要求如下:

- Linux内核版本: Linux 5.15
- •操作系统: Debian 12
- •硬件版本: 昉·星光 2
- SoC: 昉·惊鸿7110

2.2. 准备硬件

在执行演示程序之前,请务必准备以下硬件:

表 2-1 硬件准备

类型	M/O*	项目	注释
通用	М	昉·星光 2 单板计算机	
通用	Μ	 ・容量不低于32 GB的Micro-SD卡 ・Micro-SD卡读卡器 ・计算机(Windows/Mac OS/Linux) ・USB转串口转换器(3.3 V I/O, 带线) ・以太网电缆 ・电源适配器(5 V/ 3 A) ・USB Type-C数据线 	上述项目用于将Debian OS烧录到Micro-SD 上。
UART演示	Μ	・NEO-6M GPS ・4根杜邦线(母对母) ・外部天线(可选)	天线用于改善GPS信号接收。

*: M: 必须。O: 可选

2.2.1. 连接硬件

以下表格和图片描述了如何将NEO-6M GPS连接到40-Pin GPIO Header上:

表 2-2 将NEO-6M GPS连接到40-Pin GPIO Header上

	40-Pin GPIO Header				
	Pin Number	Pin Name			
VCC	4	5V 电压			
GND	6	GND			
www.starfivatach.com	◎ 2018-2023 L海塞哈利士左阳八三	(

表 2-2 将NEO-6M GPS连接到40-Pin GPIO Header上 (续)

	40-Pin GPIO Header			
	Pin Number	Pin Name		
TXD	10	GPIO6 (UART RX)		
RXD	8	GPIO5 (UART TX)		

图 2-1 将NEO-6M GPS连接到40-Pin GPIO Header上

2.3. 准备软件

确认按照以下步骤进行操作:

该Python应用VisionFive.gpio适用于昉·星光单板计算机、昉·星光 2和昉·惊鸿7110 EVB。

- 1. 按照<u>《昉·星光 2单板计算机快速参考手册》</u>中的"将**OS**烧录到*Micro-SD"*章节,将Debian OS烧录到Micro-SD卡上。
- 2. 登录Debian并确保昉·星光 2已联网。有关详细说明,请参阅<u>《昉·星光 2单板计算机快速参考手册》</u>中"通过以太 网使用*SSH"*或"使用*USB*转串口转换器"章节。
- 3. 在Debian上扩展分区,请参见<u>《昉·星光 2单板计算机快速参考手册》</u>中"扩展分区"章节。
- 4. 执行以下命令, 在Debian系统上安装PIP:

apt-get install python3-pip

5. 在昉·星光 2 Debian上执行pip命令, 以安装VisionFive.gpio包:

|2 - 准备

>注:

由于pypi.org官网尚不支持上传RISC-V平台的whl安装包,不能直接使用pip install VisionFive.gpio命 令在线安装,因此请按照以下步骤安装VisionFive.gpio包。

```
a. 执行以下命令, 安装依赖包:
```

```
apt install libxml2-dev libxslt-dev
python3 -m pip install requests wget bs4
```

b. 执行以下命令,运行安装脚本Install_VisionFive_gpio.py:

python3 Install_VisionFive_gpio.py

安装脚本代码如下:

```
import requests
import wget
import sys
import os
from bs4 import BeautifulSoup
def parse_data(link_addr, class_type, key_str):
   req = requests.get(url=link_addr)
    req.encoding = "utf-8"
   html=req.text
   soup = BeautifulSoup(req.text,features="html.parser")
   package_version = soup.find(class_type,class_=key_str)
   dd = package_version.text.strip()
   data = dd.split()
   return data
def parse_link(link_addr, class_type, key_str):
   req = requests.get(url=link_addr)
   req.encoding = "utf-8"
   html=req.text
   soup = BeautifulSoup(req.text,features="html.parser"
    search_data = soup.find(class_type,class_=key_str)
    search_data_2 = search_data.find("a")
   dl_link_get = search_data_2.get("href")
   return dl_link_get
def get_dl_addr_page():
    link_address = "https://pypi.org/project/VisionFive.gpio/#history"
    key_str = "release_version"
    class_key = "p"
    data_get = parse_data(link_address, class_key, key_str)
    latest_version = data_get[0]
   dl_addr_page
 = "https://pypi.org/project/VisionFive.gpio/{}/#files".format(latest_version)
    return dl_addr_page
def get_dl_addr_of_latest_version(link_addr):
   key_str = "card file__card"
   class_key = "div"
   addr_get = parse_link(link_addr, class_key, key_str)
    return addr_get
def main():
    dl_addr_p = get_dl_addr_page()
    whl_dl_addr = get_dl_addr_of_latest_version(dl_addr_p)
    whl_name = whl_dl_addr.split("/")[-1]
    whl_name_suffix = os.path.splitext(whl_name)[-1]
    whl_name_prefix = os.path.splitext(whl_name)[0]
    whl_name_prefix_no_platform = whl_name_prefix[0: len(whl_name_prefix) - 3]
    new_platform = "linux_riscv64"
```


rename_whl_name = "{}{}".format(whl_name_prefix_no_platform, new_platform, whl_name_suffix)

wget.download(whl_dl_addr, out=rename_whl_name)

os.system("pip install " + rename_whl_name)
os.system("rm -rf " + rename_whl_name)

if __name__ == '__main__':
 sys.exit(main())

3. 执行演示代码

执行以下操作,以在昉·星光 2的Debian系统上运行演示代码:

- 1. 找到测试代码uart_gps_demo.py所在的目录:
 - a. 执行以下命令以获取VisionFive.gpio所在的目录:

pip show VisionFive.gpio

示例结果:

Location: /usr/local/lib64/python3.9/site-packages

实际输出取决于应用的安装方式。

b. 如前一步输出中所示,执行以下操作进入目录/usr/local/lib64/python3.9/site-packages:

cd /usr/local/lib64/python3.9/site-packages

c. 执行以下命令进入sample-code目录:

cd ./VisionFive/sample-code/

2. 在执行演示代码前, 在您的终端上执行以下命令:

sudo systemctl stop serial-getty@ttyS0.service

3. 在sample-code目录下,执行以下命令以运行演示代码:

sudo python uart_gps_demo.py

或者, 您也可以执行以下命令:

sudo python3 uart_gps_demo.py

结果:

如果GPS信号弱,终端输出如下:

```
*****The GGA info is as follows: *****
msg_id: $GPGGA
NorS:
EorW:
pos_indi: 0
total_Satellite: 00
```

!!!!!Positioning is invalid!!!!!

如果GPS信号强,几秒后终端输出如下:

```
*****The GGA info is as follows: *****
msg_id: print(" utc time: 2:54:47.0
utc time: 025447.00 (format: hhmmss.sss)
latitude: 30 degree 33.29251 minute
latitude: 3033.29251 (format: dddmm.mmmm)
NorS: N
longitude: 104 degree 3.45523 minute
longitude: 10403.45523 (format: dddmm.mmmmm)
EorW: E
pos_indi: 1
total_Satellite: 08
*****The positioning type is 3D *****
The Satellite ID of channel {} : {}
```

```
ch1 : 14
ch2 : 01
```

|3 - 执行演示代码

ch3	:	03	
ch4	:	06	
ch5	:	30	
ch6	:	21	
ch7	:	19	
ch8	:	17	

4. 演示源代码

本演示中的资源代码仅作为参考。

```
uart_gps_demo.py:
```

```
.....
Please make sure the NEO-6M is connected to the correct pins.
The following table describes how to connect NEO-6M to the 40-pin header
Passive Buzzer___Pin Number____Pin Name
                      4
        VCC
                                                                 5 V Power
        GND
                                                 6
                                                                                     GND
                                                10
                                                                            UART RX
        TXD
                                                                               UART TX
         RXD
                                                 8
1.1.1
import sys
import serial
import time
#Reference information of the GPGSA format.
Example 1 (GPS only):
$GPGSA,M,3,17,02,30,04,05,10,09,06,31,12,,,1.2,0.8,0.9*35
Example 2 (Combined GPS and GLONASS):
$GNGSA,M,3,17,02,30,04,05,10,09,06,31,12,,,1.2,0.8,0.9*2B
$GNGSA,M,3,87,70,,,,,,,,,1.2,0.8,0.9*2A
SN Field
                                         Description
                                                                                  Symbol
                                                                                                                   Example
1
                   $GPGSA
                                         Log header.For information about the log headers, see ASCII, Abbreviated ASCII or Binary.
                                                                                   N/A
                                                                                                                   $GPGSA
                    mode MA
2
                                         Mode: 1 = Fix not available; 2 = 2D; 3 = 3D
                                                                                   x
                                                                                                                   3
3
                    mode 123
                                         Latitude (DDmm.mm)
                                                                              1111.11
                                                                                                                 5106 9847
4-15 prn
                                         PRN numbers of satellites used in solution (null for unused fields), total of 12 fields
                                         GPS = 1 \text{ to } 32
                                         SBAS = 33 to 64 (add 87 for PRN number)
                                         GLO = 65 to 96
                                                                                   xx, xx, . . . .
                                                                                                                  18,03,13,25,16,24,12,20,,,,
The detail info, please see
 https://docs.novatel.com/OEM7/Content/Logs/GPGSA.htm?tocpath=Commands%20%2526%20Logs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7CLogs\%7
 ____63
1.1.1
GPGSA_dict = {
"msg_id": 0,
"model": 1,
"mode2": 2,
```

www.starfivetech.com

```
"ch1":
               З,
"ch2":
               4,
"ch3":
               5,
"ch4":
                б,
"ch5":
               7,
"ch6":
               8,
"ch7":
               9,
"ch8":
               10,
"ch9":
               11,
"ch10":
               12,
"ch11":
               13,
"ch12":
              14,
}
#Reference information of the GPGGA format.
1.1.1
Example 1 (GPS only):
$GPGSA, M, 3, 17, 02, 30, 04, 05, 10, 09, 06, 31, 12, ,, 1.2, 0.8, 0.9*35
Example 2 (Combined GPS and GLONASS):
$GNGSA,M,3,17,02,30,04,05,10,09,06,31,12,,,1.2,0.8,0.9*2B
$GNGSA,M,3,87,70,,,,,,,,,,,,1.2,0.8,0.9*2A
SN Field
                Description
                                Symbol
                                           Example
1 $GPGGA
               Log header.For information about the log headers, see ASCII, Abbreviated ASCII or Binary.
                               N/A
                                            $GPGGA
2
  utc
                UTC time status of position (hours/minutes/seconds/ decimal seconds)
                              hhmmss.ss
                                           202134.00
3
  lat
                Latitude (DDmm.mm)
                               1111.11
                                           5106.9847
   lat dir
4
                Latitude direction (N = North, S = South)
                         a
                                           N
5
  lon
                Latitude direction (N = North, S = South)
                          ууууу.уу
                                           11402.2986
   lon dir
6
                Longitude direction (E = East, W = West)
                               а
                                            W
  quality
7
                refer to Table: GPS Quality Indicators
                               x
                                           1
   # sats
8
               Number of satellites in use.May be different to the number in view
                              xx
                                           10
The detail info, please see
https://docs.novatel.com/OEM7/Content/Logs/GPGGA.htm?tocpath=Commands%20%2526%20Logs%7CLogs%7CGNSS%20Logs%7C_
____59
GPGGA_dict = {
"msg_id": 0,
                 1,
"utc":
```

```
|4 - 演示源代码
```

```
"latitude":
                        2,
"NorS":
                        3.
"longitude":
                        4,
"EorW":
                        5,
"pos_indi":
                        6.
"total_Satellite":
                       7.
}
uart_port = "/dev/ttyS0"
def IsValidGpsinfo(gps):
   data = gps.readline()
    #Convert the data to string.
    msg_str = str(data, encoding="utf-8")
   #Split string with ",".
    #GPGSA,A,1,,,,,,,,,,99.99,99.99,99.99*30
    msg_list = msg_str.split(",")
    #Parse the GPGSA message.
    if (msg_list[GPGSA_dict['msg_id']] == "$GPGSA"):
           print()
            #Check if the positioning is valid.
            if msg_list[GPGSA_dict['mode2']] == "1":
               print("!!!!!Positioning is invalid!!!!!")
            else:
                print("*****The positioning type is {}D *****".format(msg_list[GPGSA_dict['mode2']]))
                print("The Satellite ID of channel {} : {}")
                #Parse the channel information of the GPGSA message.
                for id in range(0, 12):
                    key_name = list(GPGSA_dict.keys())[id + 3]
                    value_id = GPGSA_dict[key_name]
                    if not (msg_list[value_id] == ''):
                       print("
                                                          {} : {}".format(key_name, msg_list[value_id]))
    #Parse the GPGGA message.
    if msg_list[GPGGA_dict['msg_id']] == "$GPGGA":
       print()
       print("*****The GGA info is as follows: *****")
        for key, value in GPGGA_dict.items():
            #Parse the utc information.
            if key == "utc":
                utc_str = msg_list[GPGGA_dict[key]]
                if not utc_str == '':
                   h = int(utc_str[0:2])
                   m = int(utc_str[2:4])
                    s = float(utc_str[4:])
                   print(" utc time: {}:{}:{}".format(h,m,s))
                   print(" {} time: {} (format: hhmmss.sss)".format(key, msg_list[GPGGA_dict[key]]))
            #Parse the latitude information.
            elif key == "latitude":
                lat_str = msg_list[GPGGA_dict[key]]
                if not lat_str == '':
                    Len = len(lat_str.split(".")[0])
                    d = int(lat_str[0:Len-2])
                   m = float(lat_str[Len-2:])
                   print(" latitude: {} degree {} minute".format(d, m))
                   print(" {}: {} (format: dddmm.mmmmm)".format(key, msg_list[GPGGA_dict[key]]))
            #Parse the longitude information.
            elif key == "longitude":
                lon_str = msg_list[GPGGA_dict[key]]
                if not lon_str == '':
                   Len = len(lon_str.split(".")[0])
                   d = int(lon_str[0:Len-2])
                    m = float(lon_str[Len-2:])
                    print(" longitude: {} degree {} minute".format(d, m))
                    print(" {}: {} (format: dddmm.mmmmm)".format(key, msg_list[GPGGA_dict[key]]))
            else:
                print(" {}: {}".format(key, msg_list[GPGGA_dict[key]]))
def main():
    gps = serial.Serial(uart_port, baudrate=9600, timeout=0.5)
    while True:
```

IsValidGpsinfo(gps)
time.sleep(1)

gps.close()

if __name__ == "__main__":
 sys.exit(main())

5. 资源下载

点击本栏找到所有的代码下载资源。

本页包括所有赛昉科技提供的代码下载资源。

- <u>RVspace Wiki</u>
- •<u>应用中心</u>
- <u>文档中心</u>
- <u>技术论坛</u>
- <u>昉·星光 2 GitHub代码仓</u>
- <u>昉·星光 2 Debian操作系统下载</u>
- •<u>代码下载(赛昉科技官方GitHub页面)</u>
- 所有开源技术文档

6. 立即购买

点击本栏获取在线购买链接和配件购买链接。

购买单板计算机

点击以下页面,您可以找到所在地区的经销商,或覆盖全球的销售渠道,以购买防·星光 2单板计算机。

•<u>购买昉·星光2开发板</u>

购买配件

点击以下页面,您可以找到所有防·星光 2单板计算机已验证适配的配件及其购买链接。

•<u>购买配件</u>